Workshop on:

High-Performance Numerical Libraries for Science and Engineering:

Panel II: Promoting Interoperability

Panelists:

- Robert Clay
- Andrew Cleary
- Craig Rasmussen
- Matt Sottile

Moderator: Tony Drummond

Approach to interoperability

http://acts.nersc.gov

- Tool A "can call" Tool B (specific wrappers)
- Problem Solving Environments
 - NetSOLVE
- Commercial Packages
 - MATLAB
- Python + ACTS = PyACTS interface
- SILOON
- BABEL
- ESI FEI
- CCA

http://acts.nersc.gov

User Application

http://acts.nersc.gov

TOPS: Terascale Optimal PDE Simulations Keyes et. al.,

ANL, LBNL, LLNL, ODU, UCB and UTK

User Application

PyACTS

http://acts.nersc.gov

Educational Outreach

$$Ax = b$$

View_field(T1)

$$Az = \lambda z$$

$$A = U\Sigma V^T$$

PyACTS

PyACTS

http://acts.nersc.gov

Scientific Applications

- **PyClimate**: provides several services currently for analysis of climate variability (J. Saenz, University of the Basque Country)
- •Code developers: Fortran, C, C++

PyACTS

Interoperability Issues

http://acts.nersc.gov

Q1. Where is the starting point for developers of scientific and engineering applications?

Q2. A message for other tool developers: What has worked?, what hasn't?

Q3. How does interoperability affects performance?